• 2 Posts
  • 92 Comments
Joined 1 year ago
cake
Cake day: June 17th, 2023

help-circle




  • cynar@lemmy.worldtoSelfhosted@lemmy.worldServer for a boat
    link
    fedilink
    English
    arrow-up
    17
    ·
    3 months ago

    Your best bet might be to use a laptop as the basis. They are already designed with power efficiency in mind, and you won’t need an external screen and keyboard for local problem solving.

    I would also consider having a raspberry pi 3 or similar as a companion. Services that must be up all the time run on the pi (e.g. network admin). The main computer only gets kicked out of sleep mode when required. The pi 3 needs less power than the newer pis, while still having enough computing power to not lag unless pushed hard.

    I definitely agree with SSDs. HDDs don’t do well when rotated when running. Boats are less than a stable platform.




  • The consensus in the trans community is to let a potential partner know earlier, rather than later. It avoids the situation you’ve encountered. Some men also can react violently, when they find out, so it’s quite a critical dilemma to them.

    Unfortunately, not all follow that mindset. They also tend to bust out a lot, and so lead a lot of men on.

    It’s a bit like the scumbag dilemma women face. Very few men are scumbags, yet women encounter them regularly when dating. Most men try not to annoy the women they find attractive. They are careful in their approach mentality. This means they only make a few approaches (relatively). They also tend to pair off, and so exit the pool. Scumbags cast a wide net, and don’t hang on to women for long. This means they make a LOT of approaches, and so annoy a vastly disproportionate number of women.

    Basically most trans people try to be as polite and careful about it as possible. A few, unfortunately, can destroy the reputation of the rest by being scumbags about it, at least locally.







  • One of the key thing that LLMs lack is a knowledge layer. In many ways, modern LLMs are hyper advanced predictive text. Don’t get me wrong, what they produce is awesome and can be extremely useful, but it’s still fundamentally limited.

    Ultimately, a useful AI will need some level of understanding. It will need to be able to switch between casual chatter, and information delivery. It will need to be able to crosscheck its own conclusions before delivering them. There are groups working on this, but they are quite a bit behind LLMs. When they catch up, and the 2 can be linked/combined then things will get VERY interesting!




  • I personally make use of the sonoff pow smart plugs, with Tasmota firmware. Though any Tasmota compatible smart plug with power readings will work.

    The key thing is that with Tasmota, you can properly calibrate the readings. I have a friend with a high quality power meter. I used that to calibrate my smart plugs, they seem to track within a few % of the expensive one, once calibrated.

    Depending on if you have access to an expensive meter or not, this will either be the best bet, or completely useless to you. Your local Hackspace might also be a good option for getting your hands on an expensive meter for an evening.


  • I design build and operate broadcast equipment. A good chunk goes onto UAVs. I’ve built small quads, and I’ve played around with equipment fully capable of some of the more complex tasks. E.g. live 3D mapping from an airborne capable computer.

    I’m also friends with several people who used to design and build military equipment, including radar systems. Military tech is a weird mix of amazingly high tech, stupidly simple hacks and long lifespan versions of off the shelf technology. I’ve a fairly good feel for how hard or easy a good chunk of the bits are to build. Most of what I suggested I could personally design and build, or easily commission, given some time, a reasonable budget, and access to restricted resources as required.

    In its simplest form, chaff is just tuned lengths of mylar foil. As it flutters, it glitters in a radar beam. This creates a large noise floor. While modern military chaff is more advanced, the old stuff will still cause problems for modern systems. It’s not trying to hide a tank, or pull off a missile’s lock. It’s trying to swamp the signal from a tiny, mostly plastic, drone.

    I’m also not saying to reinvent the wheel. Chaff is now a fairly niche defence tool. It’s hard to use while advancing, and gives away your position. It also needs to be integrated with other countermeasures to be useful. It is still a fairly solved problem however. It’s cheap to make, quick to deploy, and available in bulk, if required.

    Most modern military equipment isn’t expensive due to its inherent nature. It’s expensive because it’s a niche product, and the buyers have deep wallets. The same game plays out in broadcasting. A £100k camera isn’t that much better than a £5k one. It is better however, and buyers are willing to pay for that difference.

    The reverse is also true, as Ukraine is proving. 100 $1k drones are more useful than 1 $100k, ultra capable, drone or missile. The point of a swarm is to allow multiple cheap systems to do the job of a far more expensive weapon.


  • Easy for a remotely advanced military force.

    An explosive drone is easy. Just a small amount of high explosives and an electronic detonator.

    Strobe lights could just be an overdriven LED. It just needs to dazzle optical sensors for a few seconds.

    Chaff is just lightweight foil. It’s effectively an oversized party popper. It’s job is to help overwhelm radar based tracking.

    Software is the hardest bit. At the same time, many computer game ‘AIs’ are good enough at this they need to be dumbed down significantly. It would be more specialised, but only needs to be written once, then rolled out to a fleet.

    Batteries would be a swarms limiting factor. Single shot lithium would likely be the bulk. 5-20 minutes of flight, then it’s dead. Disposables would likely need to be moved into position by other means, either a dedicated transport drone, ground transport, or air drop. Your transport doesn’t need to stay in the combat zone however, it can bug out and be reused. Larger more specialist systems would land and loiter to save batteries, and/or be fuel cell powered.

    Reliability is handled by numbers, losing 10% is fine, when you have 20% extra.

    Computing requires would be met by something like Nvidia’s Jetson range. They are designed for low power, low weight AI processing. Putting a tflop of computing power in the close Comms loop would be simple. The controller would be the most expensive part of the swarm. Not only would it need enough power, both computing and electrical, but also significant Comms capabilities. Radio links, with optical backup would be the workhorse. With a mesh setup, including dummies to help hide it’s location. This is similar to how the display drones work. An expensive hub, serving a cheap swarm.

    While none of this is “easy” for a random guy in a shed, or a terrorist in a cave, it’s child’s play compared to a lot of the tech the US can deploy.